

A research institute of the ETH Domain

Forest-related Economic and Social Science Research

Roland Olschewski

Swiss Federal Institute for Forest, Snow and Landscape Research WSL

Swiss Forest Lab – General Assembly – 09.02.2024

Research Unit: Economics and Social Sciences

rmi Seidl

Research Groups:

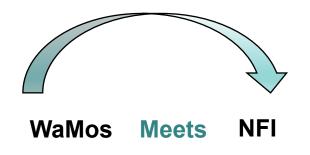
Regional Economics and Development

Marco Püt

Social Sciences in Landscape Research

Marcel Hunzike

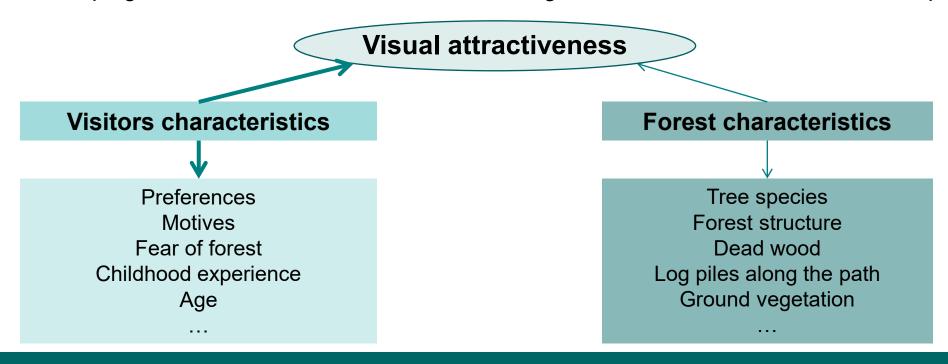
Environmental and Resource Economics


Roland Olschewsk

Integrating recreation into forest monitoring

Tessa Hegetschweiler, Marcel Hunziker, Urs-Beat Brändli, Christoph Fischer, Christian Ginzler

Funding: BAFU, WSL, SERI


Duration: 2014 – 2022

Integrating recreation into forest monitoring

Goals

- > linking bio-physical and socio-cultural monitorings with regard to forest recreation.
- > developing a model for forest recreation consisting of natural- and social-science components.

Integrating recreation into forest monitoring

Added value for NFI?

- Identify variables contributing to visual attractiveness
- Develop method to integrate recreation and societal aspects into NFI

Added value for WaMos?

Determine bio-physical forest characteristics that contribute to explaining respondents' assessment of the forest

Relevance for practice?

- Indicate which forests are particularly attractive for recreation
- Option to adapt forest management accordingly
 - ➤ Follow-up: NFI-Module «Forest and Society»

MoniFun

Co-creating a blueprint of a harmonised European Forest Multifunctionality Monitoring System

- ➤ 13 partners in 11 countries
- Coordination: Natural Resource Institute Finland (LUKE)
- > Task 2: Define operational indicators, information sources and assessment methods for seven indicators

Task 2.7 – Socio-economic demands on ecosystem services (Lead: Marcel Hunziker, WSL)

Funding: EU Horizon Europe

SUPERB – Upscaling Forest Restoration

- ➤ 36 partners in 16 countries
- ➤ Lead: European Forest Institute; co-coordination: Wageningen Environmental Research
- > aims to restore thousands of hectares of forest landscape across Europe

WP5 – Governance and Society (Lead: Marcel Hunziker, WSL)

Goal:

> advance forest restoration by ensuring that policy and societal demands are known and considered in practice

Sub-goals:

- > Assess the coherence of EU and (sub-)national policy networks governing restoration across policy sectors
- > Assess local stakeholder demands and conflicts, and involve them in exploring governance solutions
- > Map the demands of ecosystem services by landowners, managers, and community/society
- > Provide a **comprehensive tool for socio-cultural monitoring and governance** of restoration projects

Research areas:

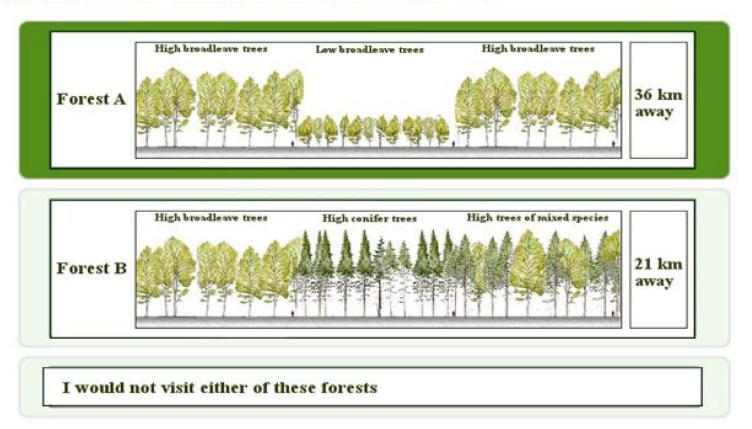
- > Forest-governance research from local & regional to (sub-)national and international level, in Europe and beyond
- > Forest-preference research including interviews and surveys on regional and multi-national level in Europe

Funding: EU Horizon 2020

Duration: 2021 – 2025

Visitors' preferences for forest structural attributes

Isabelle Jarisch, Thomas Knoke (TU Munich), Roland Olschewski (WSL)


- Nation-wide survey in Germany
- Goal: Determine population's preferences for structural variation
- ➤ Method: Choice Experiment

Funding: DFG (Germany)

Which of these two forests you would prefer for your next visit? If you would not visit either of them, please choose "I would not visit either of these forests".

- Please pay attention to both how forest looks and how far it is from your point of departure
- Imagine that these two are your options for the next recreational visit to the forest, regardless of what your real options are
- Please take into account that you may want to do something different than visiting a forest, e.g. if you find forest A & B not fulfilling your expectation of a forest visit or if both of them are too far away.

Next

Filyushkina et al. 2017: Ecological Economics https://doi.org/10.1016/j.ecolecon.2017.04.010

Strategies for climate-adapted forests: "from damage-focused coping to precautionary measures"

Tobias Schulz, Dominik Braunschweiger, Tamaki Ohmura, Janine Schweier, Roland Olschewski (WSL)

- Surveys with forest owners and managers in Canton Bern
- Goal: Determine preferences for silvicultural interventions
- ➤ Method: Choice Experiment

Funding: WHFF-CH (Nr. 2021.13) &

Cantons Aargau/Bern

Choice Experiment to analyse acceptance of adaptation measures

Scenario:

- Climate change: increased frequency and intensity of damaging events
- Management options: proactive or reactive interventions
- Focus on vulnerable stands

Choice situation:

- 2 options defined by 4 attributes
- ➤ 12 repetitions with varying combinations

Attributes and their levels

Timing of action:

- proactive (before event)

- reactive (after event)

Type of intervention:

pre-regeneration*

- planting after harvests

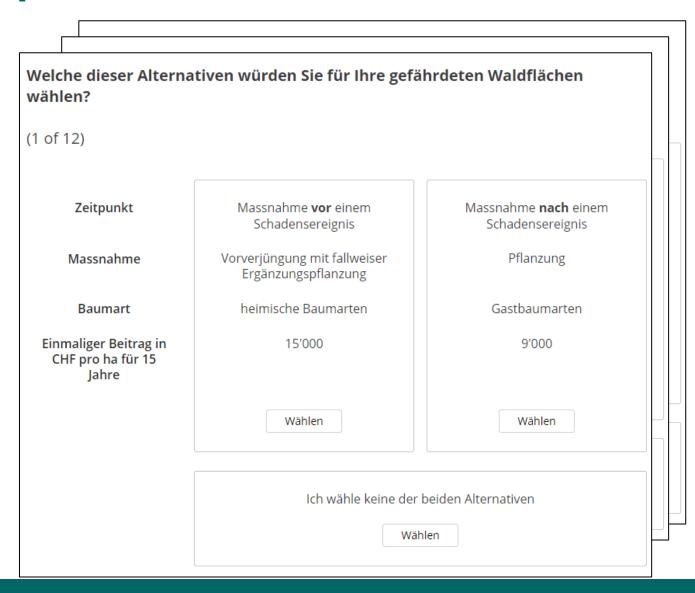
natural regeneration*

- planting

Tree species:

native / non-native

Amount of one-time payment (SFr./ha):


3'000 / 6'000 / 9'000 / 12'000 / 15'000

*) combined with supplementary planting case-by-case

Survey Canton Bern:

- Postal invitation sent out to 3032 people
- Link to online survey platform
- ➤ 558 completed questionnaires (response rate: 18.5%)

Choice Experiment Results Canton Bern:

Timing of intervention			
Proactive (before event)	4.2380		
Reactive (after event)	-4.2380		
Type of intervention			
Pre-regeneration	3.1538		
Planting after harvest	-3.1538		
Natural regeneration	39.6728***		
Planting	-39.6728***		
Tree species			
Native	66.7022***		
Non-native	-66.7022***		
One-time payment (SFr./ha)			
3'000	-155.3014***		
6'000	-53.1424***		
9'000	14.0842		
12'000	77.1950***		
15'000	117.1645***		

- > No significant preference
- > No significant preference
- ➤ Natural regeneration preferred

Native species preferred

High payments preferred

Braunschweiger et al. (in prep.)

Latent class analysis Canton Bern:

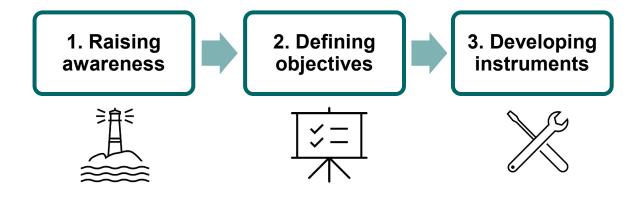
	«Proactive &	«Reactive &	«Conservative»
	payment-	payment-	
	motivated»	motivated»	
Timing of intervention: Before (+) vs. after (-) event	++++	ı	
Type of intervention: Pre-regener. (+) vs. planting (-)		+ +	
Type of intervention: Natural regener. (+) vs. planting (-)		++	+ +
Tree species: Native (+) vs. non-native (-)	-	++	++++
One-time payment: High (+) vs. low (-)	++++	++++	+ +

Conclusions Canton Bern

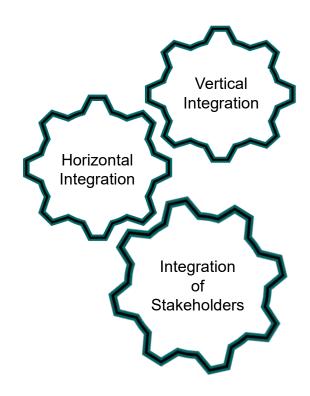
- > 1/3 of respondents prefer proactive measures and accept non-native tree species
- > 2/3 of respondents are reluctant
 - raise awareness of proactive interventions through information campaigns/trainings
 - ➤ promote climate-adaptive measures after events (including native tree species)
- > Financial support is important and can have a leverage effect
 - > but needs to be complemented by a mix of further instruments

Mainstreaming Forest Ecosystem Services

Tobias Schulz, Tamaki Ohmura, Esther Thürig, Roland Olschewski (WSL)


Synthesis of three NRP 73 research projects (2018 - 2022)

- Decision support system for forest management (SessFor, E. Thürig)
- > Acceptance of biodiversity offsetting & carbon sequestration in forests (ATREE, T. Schulz & T. Ohmura)
- ➤ Insurance value of forest ecosystem services (DIVES, R. Olschewski)


Funding: SNF - NRP 73

Mainstreaming Forest Ecosystem Services

Key steps in mainstreaming FES

- ... aims at the wider consideration of FES
- ... in strategies, policies, programmes and practices
- ... of public and private actors
- ... across all sectors that benefit from or influence FES
- ... requires an integrative approach

(based on Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES 2018)

Mainstreaming of Forest Ecosystem Services

Video: Forests and their services for people

(Available at: https://nfp73.ch/en/mediacenter)

Outlook (I)

ETH-Joint Initiative SCENE (Swiss Center of Excellence on Net Zero Emissions)

WP 3: Biomass carbon cycle (Lead: Esther Thürig)

Goal: demonstrate optimization pathways of

- forest and landscape management
- > the utilization of woody biomass
- substitution effects to mitigate climate change.

Annina Guthauser, Roland Olschewski (WSL):

- ➤ Identify economic, political, and societal opportunities and obstacles of a net-zero transformation
- > Develop forest and wood use scenarios in cooperation with stakeholders

Funding: ETH/WSL

Outlook (II)

ETH-Joint Initiative MainWood (Mainstreaming Wood Construction)

WP B: Forest growth and wood production (Lead: Harald Bugmann/Andreas Rigling)

Goals:

- > Develop forest management scenarios relevant to net zero (particularly in case study regions)
- Model effects on forest growth, ecosystem services and biodiversity
- > Survey of forest owners/interest groups on implications of modeling results

Tobias Schulz, Eugénie Paul-Limoges, Frank Krumm (WSL):

> Survey focusing on stakeholders' acceptance of forest management scenarios

Funding: ETH/WSL

Outlook (III)

Policy Instruments to foster the 3S Climate Services of Forest and Wood

Eva Lieberherr (Lead, ETH), Astrid Zabel (Uni Bern/CBD), Tamaki Ohmura (Uni Zurich), Tobias Schulz (WSL)

Goals:

- > Develop goal system for 3S climate services (sequestration, storage, substitution)
- ➤ Identify crucial actors and respective barriers along the wood value chain
- Suggest targeted policy instruments/mix to overcome barriers
- Assess instruments through stakeholder workshops and surveys

Funding: BAFU

A research institute of the ETH Domain

Thanks for your attention